An oscillation criterion for a delay difference equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

On a Difference-delay Equation

We investigate how the behaviour, especially at 1; of continuous real solutions f (t) to the equation f (t) = a 1 f (t + h 1) + a 2 f (t ? h 2); where a 1 ; a 2 ; h 1 ; h 2 are positive real constants, depends on the values of these parameters. Deenitive answers are given, except in certain cases when h 1 =h 2 is rational..

متن کامل

Oscillation of Nonlinear Delay Difference Equations

We obtain some oscillation criteria for solutions of the nonlinear delay difference equation of the form xn+1−xn+pn ∏m j=1x αj n−kj = 0. 2000 Mathematics Subject Classification. 39A10.

متن کامل

Oscillation of Higher-order Delay Difference Equations

where {pi(n)} are sequences of nonnegative real numbers and not identically equal to zero, and ki is positive integer, i = 1,2, . . . , and is the first-order forward difference operator, xn = xn+1− xn, and xn = l−1( xn) for l ≥ 2. By a solution of (1.1) or inequality (1.2), we mean a nontrival real sequence {xn} satisfying (1.1) or inequality (1.2) for n ≥ 0. A solution {xn} is said to be osci...

متن کامل

Oscillation by impulses for a second-order delay differential equation

We consider a certain second-order nonlinear delay differential equation and prove that the all solutions oscillate when proper impulse controls are imposed. An example is given. c © 2006 Elsevier Science Ltd. All rights reserved. Keywords—Delay differential equations, Second-order, Nonlinear, Oscillation, Impulses.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2009

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2008.07.041